
Kinetic Space

User Manual

Abstract

The Kinetic Space provides a tool which allows everybody to record and rec-
ognize customized gestures using depth images as provided by PrimeSense’s
PS1080, the Kinect or the Xtion sensors. Five highlights of the software are
that the gestures

• can be easily trained
the user can simply train the system by recording the movement

• are person independent
the system can be trained by one person and used by others

• are orientation independent
the system can recognize gestures even if the trained and tested gesture
does not have the same orientations

• are speed independent
the system is able to recognize the gesture also if it is performed faster
or slower compared to the training

• can be adjusted
the system and gesture configuration can be setup by a XML file

The software has already been used by media artists, dancers and alike to
control third party software such as Max/MSP, Pure Data, VVVV, Resolume,
etc. via the OSC protocol. The software is written in Processing and based
on SimpleOpenNI, OpenNI and NITE.

Contents

1 Introduction 2

1.1 What the Press is Saying . 3

1.2 About the Logo . 3

1.3 How to Support this Project 3

2 Installation 4

3 How To Use 5

3.1 Recognizing Gestures . 5

3.2 Training New Gestures . 5

3.3 XML Setup . 6

3.3.1 Basic Setup . 6

3.3.2 Individual Gesture Setup 7

3.4 Customize OSC Messages . 8

4 Some Words about Gesture Recognition 9

5 Algorithms & Co. 12

5.1 Feature Extraction (Front-End) 13

5.2 Optimal Features . 13

5.3 Analysis . 14

5.4 Pose Recognition using Cost Functions 14

5.5 Gesture Recognition based on DTW 15

5.5.1 Constraints . 15

5.5.2 Backtracking . 16

6 Copyright Notice 17

7 Further Reading & References 19

1

1 Introduction

The Kinetic Space provides a tool which allows everybody to record and rec-
ognize customized gestures using depth images as provided by PrimeSense’s
PS1080, the Kinect or the Xtion sensors. The software observes and compre-
hends the user interaction by processing the skeleton of the user1. The unique
analysis routines allow to not only detect simple gestures such as pushing,
clicking, forming a circle or waving, but also to recognize more complicated
gestures as, for instance, used in dance performances or sign language.

Five highlights of the software are that the gestures:

• can be easily trained
the user can simply train the system by recording the move-
ment/gesture to be detected without having to write a single line of
code

• are person independent
the system can be trained by one person and used by others

• are orientation independent
the system can recognize gestures even if the trained and tested gesture
does not have the same orientations of the person towards the sensor

• are speed independent
the system is able to recognize the gesture also if it is performed faster or
slower compared to the training and is able to provide this information

• can be adjusted
the system and gesture configuration can be setup by a XML file; e.g.
for one gesture to be recognized it can be set orientation independent
while for other gestures it is orientation dependent

The software has already been used by media artists, dancers and alike to
connect and to control a wide range of third party applications/software such
as Max/MSP, Pure Data, VVVV, Resolume, etc. via the OSC protocol. The
software is written in Processing and based on SimpleOpenNI, OpenNI and
NITE.

1two users are supported, but more users can be simply added by small changes in the
source code

2

More information about the project and the source code can be found at
(reading this manual you probably have already done so)
http://kineticspace.googlecode.com.

To get a quick overview about the project check out the short video intro-
duction about the functionality of Kinetic Space at
http://www.youtube.com/watch?v=e0c2B3PBvRw.

1.1 What the Press is Saying

[...] What is it good for? Well, it can read a gesture from one person and
register it on another and you can train it to register tiny movements and,
potentially, allow for full motion control of your PC. Minority Report it isn’t,
but that future is getting closer and closer.
— www.techcrunch.com 2011/08/05

Map your gestures and have it ready for other people to use and make refer-
ence of. The Kinect Spaces is a gesture recognition and mapping software that
gives programmers a reliable tool in creating and saving gestures via Kinect
for their software use. This video by Matthias Wlfel shows us the nitty-gritty
details of the program as well as how the Kinect Space can prove to be valu-
able to all Kinect hackers out there. [...] This is indeed a great addition in
further enhancing the Kinect controls!
— www.kinecthacks.com 2011/07/21

1.2 About the Logo

The Kinetic Space logo represents a space (represented by the box) with an
arrow directing into the space, meaning please enter the Kinetic Space.

1.3 How to Support this Project

Like any other open source project the success is based on the support of
the community. There are a variety of possibilities: use the software, tell
a friend, give feedback (positive or negative), work on the source code or
documentation (please coordinate your activity) or provide financial support.

3

2 Installation

The Kinetic Space is intended as an open system so that everybody has
access to the full source code and that everybody can make adjustments to
their own needs. Therefore, it does not come in binary form. Instead the
program has been written in processing2 which can run on several platforms
such as Linux, Mac OS X, and Windows (it has been sucessfully tested and
used on all three platforms).

To make the software run on your system, you have to install OpenNI3 and
PrimeSense’s Natural Interaction Middleware (NITE)4. In addition you have
to install Processing5 with the following packages installed in the libraries

folder:

• SimpleOpenNI6 — a simple OpenNI and NITE wrapper for processing

• oscP57 — an implementation of the OSC protocol for processing

• fullscreen8 — better full screen support for processing

A detailed step by step instruction on how to install most of the used software,
except oscP5 and fullscreen, for Windows, OS X and Linux can be found at
the following link:
http://code.google.com/p/simple-openni/wiki/Installation.

Now, finally, you are able to load the source code in processing and run the
program.

2an open source programming language and environment
3http://www.openni.org/downloadfiles
4http://www.primesense.com/?p=515
5http://processing.org
6http://code.google.com/p/simple-openni
7http://www.sojamo.de/libraries/oscP5/index.html
8http://www.superduper.org/processing

4

3 How To Use

This section gives you a brief overview on how to use the software, how to
train new gestures and how to set customized OSC messages.

3.1 Recognizing Gestures

After running the source code you first have to be recognized by the system.
There are two possibilities:

• The first is to register yourself by holding up your hands (if autodetec-
tion is turned off).

• The second is to ’just’ move in front of the sensor (if autodetection is
turned on).

Note that even though only a single person is shown on the registering screen
a second person can always be registered by the system. If one or two persons
are registered, the system is already ready to use and is constantly analysing
the gestures. In case the user is getting out of range, an icon (in the users
color) is prompted which points into the direction the user has to move to
get back into the viewing range of the sensor.

By pushing the

• d key you can flip the images.

• + or - keys you can switch between a visualization of the cost matrix
for the different learned gestures and the current observation (only for
the first person).

3.2 Training New Gestures

The system can easily learn new gestures by pushing a key between 0 and
9. If one of these keys has been pressed the last 25 frames (one second) of
the first person are stored and the novel gesture is immediately ready to
be used by both persons. If you want to recognize a gesture which is less
than 25 frames long, you can adjust for the length using the XML setup (see
Section 3.3).

Please note that in the current setup, stored gestures are replaced by the
newly trained gestures without warning.

5

3.3 XML Setup

This section describes the configuration of the XML setup file. The setup file
has to be located in the data folder and named setup.xml.

3.3.1 Basic Setup

In this section we discus how to setup the basic system and how to set values
which determine the settings for all gestures:

• autodetection
autodetection allows you to switch on or off a preloaded bones model.
In this case where a preloaded bones model is used it is not needed
to register with the registration pose (might not work on Mac OS X).
Note, while this can be very convenient, it might not lead to the best
possible recognition results (in particular if the system is going to be
used by a single person).

<autodetection>yes</autodetection>

• multithreading
multithreading can be turned on or off using the command

<usemultithreading>yes</usemultithreading>

• normalization
two different normalization methods can be turned on or off

<normalize>

<size>yes</size>

<rotation>yes</rotation>

</normalize>

The first method, size, normalizes the size of a person to a standard
person (might always lead to the best possible recognition result if
turned on). The second method, rotation, normalizes the rotation of
the person to the sensor. Note that it is helpful to normalize the rotation
to be independent of the orientation of the person to the sensor. If the
gesture to be detected, however, has a rotational component, it is better
to turn the normalization of the rotation off.

6

For example, a throwing gesture, should be independent of the orien-
tation of the throwing direction (the orientation of the throw should
be determined by other methods: e.g. triangulation between the cur-
rent hand position and a former hand position), while in a dance per-
formance the spin (and thus orientation to the sensor) might be of
interest.

• weight
to adjust for the influence of the different axis and the overall sensitivity
you can set different weighs to the different axis by

<weight>

<x>1.0</x>

<y>0.5</y>

<z>1.5</z>

</weight>

This is helpful, for instance, if you want to recognize a gesture where
the precision of the z-axis has to be very precise, while the precision
of the y-axis should be quite flexible. An example could be a throwing
gesture, here the z-axis should have a high precision (in particular if
rotation normalized), while the y-axis should be flexible (it should not
matter if your hand is close or far away from your body).

• body part
to select the body part of focus you can use one out of three options,
namely: botharms, leftarm or rightarm

<bodypart>bothams</bodypart>

Once again, thinking about a throwing gesture, the arm and hand posi-
tion of the throwing arm should matter, while the position of the second
hand and arm should not matter. In this case it would be helpful to
give all weight to the throwing arm and no weight to the other arm.
This can be established by, either, leftarm, if the throwing arm is on
the left or rightarm if the throwing arm is on the right.

3.3.2 Individual Gesture Setup

While in the former, we have discussed how to adjust for the overall setup,
in this section we describe how to adjust an individual pose. This is possible
by using gesture and an id as you can see in the example:

7

<gesture>

<id>2</id>

<normalize_rotation>no</normalize_rotation>

<bodypart>rightarm</bodypart>

<weight>

<x>0.5</x>

<y>0.5</y>

<z>1.5</z>

</weight>

</gesture>

If you compare to Section 3.3.1 you see that the structure is identical,
except for the normalization where the complete construct is replaced by
normalize rotation. This is due to the fact that the normalization of the
size can only be turned on or off for all poses at the same time while it is
possible to turn of the normalization of the rotation on and off for each indi-
vidual pose. Note that if a variable or an individual gesture is not determined,
the basic values as defined in Section 3.3.1 are used.

3.4 Customize OSC Messages

In order to customize your OSC messages to your own needs (the needs of
your favored music or visualization tool) you can adjust the sample code as
provided in the function: void sendOSCEvent(int event, int person).

Note that you can already separate between the detected gestures/events and
the person who performed the action. If you want to include other information
such as speed of action or confidence you have to extend the code respectively.

In a future version it is planned to adjust for the OSC messages by a XML
file similar to the one already discussed.

8

4 Some Words about Gesture Recognition

Gestures are expressive, meaningful body motions such as physical move-
ments of the fingers, hands, arms, head, or body and also include facial
expressions such as emotion, with the intention

• to communicate meaningful information (semiotic),

• to manipulate or to interact with the environment (ergotic), or

• to discover the environment through tactile experience (epistemic).

The recognition of gestures is the interpretation of human movement by com-
puters via mathematical algorithms. Gesture recognition9, therefore, enables
humans to interface with the machine and interact naturally with or without
any mechanical devices. Using the concept of gesture recognition, it is for
example possible to point a finger at the computer screen so that the cursor
will move accordingly, to interpret sign language or to analyse dance moves.

The ability to track and recognize a person’s movements can be achieved
through various sensors. Some are vision based10, which will be discussed in
more detail, or controller based. Controllers are, for example, the computer
mouse, data gloves which detect hand position, movement and finger bending
or the Wii remote control, which measures acceleration over time. Vision
based recognition can rely on

• a single camera
A normal camera can be used to recognize gestures. Although not nec-
essarily as effective as the other types of cameras it allows for a wider
accessibility.

• a stereo camera
Two cameras positioned next to each other can be used to determine
depth in the scene by corresponding points in the two images.

• a camera array
Similar to stereo cameras the relation between the cameras (which can
be placed for example in each corner of a room) can be used to get a
3D representation of the environment.

9While the term gesture recognition includes the interpretation of a static posture, but
is not limited to it, in the literature systems which can only detect static posture are often
falsely called gesture recognition systems instead of pose recognition systems.

10we are not including touch sensitive surfaces based on cameras in our overview

9

• a time-of-flight cameras
The depth is measured, more or less similar to radar or LIDAR, by
measuring the travel time of a light pulse which can then be transferred
into distance.

• a structured-light 3D scanner
A depth map (a variant of image-based 3D reconstruction) can be de-
rived by using projected infrared light patterns and an analysis of what
is being seen in an infrared camera (Peng et al. 2007). The Kinect-
Sensor is a prominent example.

Note that each sensing technology differs in accuracy, resolution, latency,
range of motion, user comfort, and cost and therefore has advantages and
disadvantages which need to be considered for the very specific purpose of
an application.

Gestures can be classified into different categories:

• gesticulation
spontaneous movements of hands and arms that accompany speech

• sign languages
linguistic systems which are well defined.

• pantomimes
gestures that depict objects or actions, with or without accompanying
speech

• pointing
directional indication through pointing has a very specific purpose in
our society, to reference an object or location based on its position
relative to ourselves.

• emblems
gestures (often culturally specific) such as waving, thumbs up, V for
victory, and assorted rude gestures

• dance
following a specific pattern / expression

• sport
particular movements according to a particular sportive activity such
as Tennis or Golf

10

These different types of gestures can be readily used for a broad variety of
human-computer-interaction:

• gestures can serve as virtual controllers (remote control) to trigger
events to control interactions within video games to try and make the
game player’s experience more interactive or immersive

• gestures can be analysed to identify wrong movements in dance, sports
(e.g. katas), healthcare (e.g. lifting a box)

• gestures can be used to identify the emotional state of the user

• similar to speech recognition, certain types of gesture can be tran-
scribed into text by interpreting the sign language

11

5 Algorithms & Co.

In this section we briefly explain the basic algorithms to realize a gesture
recognition system. A common gesture recognition system is composed of
three components, namely, the sensor (as already discussed), the feature-
extraction (also called front-end) and the analysis (also called back-end).
While the front-end is responsible to extract the relevant features of the
sensor signal the back-end is responsible for the detection of pose (for each
frame11) and gesture (for an array of frames).

In the literature two different approaches to gesture recognition are common:
model or appearance based. While model based methods use key elements of
the body represented in 3D coordinates (x,y,z) such as joint angles in order
to obtain several important parameters, appearance-based models use either
image sequences, or certain features derived from these, as gesture templates.
Model approach can again be separated into volumetric or skeletal models.
While the former have been heavily used in off line algorithms the latter is
commonly used for real time analysis of gestures due to the fact that only
key parameters have to be analyzed. The techniques we describe here rely
on key points which are represented in a 3D coordinate system (Cartesian
coordinates). Based on the relative motion of these key points, gestures can be
detected with high accuracy. The quality of the recognition system depends
on a number of parameters including:

• quality of the input (accuracy of the key points, camera position, am-
bient light)

• proper selection of features (e.g. if a hand gesture needs to be classified
it is not particular useful to include the food position as a feature)

• frame rate (a higher frame rate allows for a better tracking)

• intra- and interpersonal variability12 of gestures (gestures are highly
variable, from one person to another and from one example to another
from the same person)

• quality of the detection algorithm

11In our context a frame is defined as a single image.
12intrapersonal variability, in gesture recognition, is defined as the amount of variation

in repeating a gesture by a single person, while interpersonal variability is the amount of
variation in the performance of a gesture between different persons

12

5.1 Feature Extraction (Front-End)

In pattern recognition feature extraction refers to the process of reducing the
number of input parameters such that relevant information from the input
data is preserved or extracted in order to perform a desired task while the
other information has to be omitted. This reduction of parameters is required
to prevent the use of large amount of memory and computation power, but
more importantly to prevent the classification algorithm from over fitting to
the training sample and therefore to generalizes poorly to new samples.

Because gestures are highly variable, from one person to another and from
one example to another performed by the same person, it is essential to
extract ”the essence of the gesture,” while information such as the height or
size of a person or the t-shirt color is not relevant. Note as it is not possible to
completely reduce the user specific information it is always a tradeoff between
accuracy and generality – the more accuracy desired, the more user specific
training is required.

5.2 Optimal Features

Best recognition results can be achieved when an expert constructs a set of
application-dependent features. Those features can be constructed either

• based purely on expert knowledge,

• data driven applying dimensionality reduction techniques such as prin-
cipal components analysis, independent component analysis, or linear
discriminant analysis, or

• a combination of both.

For the purpose of gesture recognition time-varying sequence of parameters
describing position, velocities, and angles of relevant body part are most
useful. In an ideal world those features would be noise free, time invariant,
person independent, orientation independent (depending on the application)
and robust to conclusions. Of course this ideal world does not exist and
one has to cope with this effects as best as possible. That means one tries
to compensate for those effects using particular algorithms. To make the
extracted information person independent it is helpful to scale the length
of different key points to match an average person. To make the extracted
features independent of the orientation of the person to the sensor it is helpful
to compensate for the orientation by a well defiended rotation around the
persons vertical-axis.

13

5.3 Analysis

Pose (static gestures), can be recognized without the consideration of tempo-
ral patterns and, therefore, a straightforward implementation using standard
pattern recognition techniques such as cost functions, template matching,
geometric feature classification, neural networks, or support vector machines
can be used. In order to interpret movements (dynamic gesture) of the body,
one has to classify the message the movements may express. Therefore, tech-
niques are required which consider

1. the results from pose classification (on a frame-by-frame basis), and

2. the temporal structure.

The consideration of temporal structure is typically accomplished through
time compressing templates, dynamic time warping (DTW), hidden Markov
models (HMM)s, or Bayesian networks.

Note that hand-coded gestures only work for trivial systems such as waving.
In general, gesture recognition system needs to be trained through learn-
ing. Learning, in this case, means that the free parameters are set/defined
automatically by observation (training set).

5.4 Pose Recognition using Cost Functions

To detect a pose a comparison between the reference and the test sample has
to be calculated. The type of calculation is defined by the objective function
or cost function. Two widely used methods to calculate the difference between
the reference signal and the test signal are

• the Euclidian distance and

• the Mahalanobis distance.

While the Euclidean distance

d(x,y) =
√

(x− y)T (x− y)

is defined as the distance between two vectors x and y given by the
Pythagorean formula the Mahalanobis distance (Mahalanobis 1936)

d(x,y) =
√

(x− µy)TΣ−1
y (x− µy)

14

calculates the distance between one vector x and a mean vector µy and
variance matrix Σy of the training data {· · ·}y. Note that the samples of the
training data have to be from the same gestures but performed a couple of
times by one person or different persons.

The skeleton, or part, of a person consists of a couple of reference points.
The overall distance is therefore calculated by summing over all those points,
represented as the vectors x (feature values of the observation) and y (feature
values of the comparison).

5.5 Gesture Recognition based on DTW

DTW is a simple but powerful algorithm for measuring similarity between
two sequences which may vary in speed and/or acceleration. This capability
is very important to compare gesture patterns as the speed of a performed
gesture is highly variable and can even be important for further analysis (e.g.
in dance). The standard definition of DTW distance between two time series
xm and yn (with M and N elements respectively and n and m representing
the frame indexes) is

φ(m,n) = Φ(m,n) + min (φ(m− 1, n− 1), φ(m− 1, n), φ(m,n− 1))

where φ(m,n) is a (M+1)×(N+1) matrix, φ(0, n) and φ(m, 0) are initialized
with infinity or zero, depending on the application, and φ(0, 0) with zero. The
cost function is denoted by Φ(m,n) and might be defined with the Eucleadean
distance as defined in the previous section as Φ(m,n) = d(xm,yn). The
overall cost of the DTW algorithm of the two series equals to φ(M+1, N+1).
The cost matrix Φ(m,n) and the shortest path, determined by backtracking
(see Section 5.5.2 for details), can be visualized in the Kinetic Space. Those
informations can be useful in analysing and comparing the current input and
learned gesture.

5.5.1 Constraints

Although the DTW is a very powerful algorithm, as it has been introduced in
the previous section, it has to be adapted to not produce pathological results
and optimized its performance for a particular task. The reason for those
pathological results is an unnatural warping of the two time axes resulting in
unintuitive alignments. In the worst case one single point in one time series
could map onto a large subsection of another time series (this can for instance
happen if a pose is compared to a gesture).

15

To deal with these unwanted effects is to adjust the basic algorithm to the
specific needs by the introduction of additional constraints. A couple of con-
straints are discussed next:

• windowing
A local constraint that prevents the search path to deviate too far from
the diagonal path by enforcing the constraint

m− nN/M < R

where R defines the size of the search path.

• slope weighting
Introduces a penalty term α > 1 to penalize off-diagonal path choices
to prevent the path from being to steep or to shallow.

φ(m,n) = Φ(m,n)+min (φ(m− 1, n− 1), αφ(m− 1, n), αφ(m,n− 1))

Larger values of α lead to paths that are closer to the diagonal than
smaller values.

• step pattern
Alternative step patterns to force horizontal, vertical or diagonal steps.

5.5.2 Backtracking

So far we have discussed a way to determine the smallest cost between the
two input sequences. While this information is needed to determine which
gesture in the training set is closest to the current gesture it does not tell
you much about the speed between training and testing. This information
has, already been determined, by DTW (for φ(m, 0) = 0 ∀ m). Once the
accumulated cost matrix has been build the optimal ’walking path’ can be
determined by backtracking the stored nodes from the end point = (M; N)
to the start point = (1; 1).

16

6 Copyright Notice

Copyright (c) 2011-2012, Kinetic Space & Matthias Wölfel,
All rights reserved.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the docu-
mentation and/or other materials provided with the distribution.

• Neither the name of the software nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

• If the software is used in other software products, installations or for
research, it must always be cited as ”Kinetic Space” and a reference
to the souce code http://kineticspace.googlecode.com has to be
given. This form of citation does not require any permission.

• Adding a ”Powered by Kinetic Space” logo & text whenever an online
video is posted. And send us a note about the post.

• Do not release commercial project with Kinetic Space: Kinetic Space
is for non-commercial use only. Contact us if you want to build a com-
mercial product using Kinetic Space technologies.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

17

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

18

7 Further Reading & References

• Sakoe, H. and Chiba, S., Dynamic programming algorithm optimization
for spoken word recognition, IEEE Transactions on Acoustics, Speech
and Signal Processing, 26(1) pp. 43- 49, 1978, ISSN: 0096-3518

• C. S. Myers and L. R. Rabiner. A comparative study of several dynamic
time-warping algorithms for connected word recognition. The Bell Sys-
tem Technical Journal, 60(7):1389-1409, September 1981.

• P.C. Mahalanobis: On the generalised distance in statistics. In: Pro-
ceedings of the National Institute of Science of India. Vol. 2, Nr. 1,
1936, S. 49-55.

• L. R. Rabiner. A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257285,
February 1989.

• Peng, T., Gupta, S.K.: Model and algorithms for point cloud construc-
tion using digital projection patterns. Journal of Computing and Infor-
mation Science in Engineering, 7(4): 372-381, 2007

19

